Hybrid Biological/Solid-State Nanopores
نویسندگان
چکیده
منابع مشابه
Noise in solid-state nanopores.
We study ionic current fluctuations in solid-state nanopores over a wide frequency range and present a complete description of the noise characteristics. At low frequencies (f approximately < 100 Hz) we observe 1/f-type of noise. We analyze this low-frequency noise at different salt concentrations and find that the noise power remarkably scales linearly with the inverse number of charge carrier...
متن کاملChemically modified solid-state nanopores.
Nanopores are extremely sensitive single-molecule sensors. Recently, electron beams have been used to fabricate synthetic nanopores in thin solid-state membranes with subnanometer resolution. Here we report a new class of chemically modified nanopore sensors. We describe two approaches for monolayer coating of nanopores: (1) self-assembly from solution, in which nanopores approximately 10 nm di...
متن کاملMonitoring protein adsorption with solid-state nanopores.
Solid-state nanopores have been used to perform measurements at the single-molecule level to examine the local structure and flexibility of nucleic acids, the unfolding of proteins, and binding affinity of different ligands. By coupling these nanopores to the resistive-pulse technique, such measurements can be done under a wide variety of conditions and without the need for labeling. In the res...
متن کاملHybrid pore formation by directed insertion of α-haemolysin into solid-state nanopores.
Most experiments on nanopores have concentrated on the pore-forming protein α-haemolysin (αHL) and on artificial pores in solid-state membranes. While biological pores offer an atomically precise structure and the potential for genetic engineering, solid-state nanopores offer durability, size and shape control, and are also better suited for integration into wafer-scale devices. However, each s...
متن کاملLow-frequency noise in solid-state nanopores.
Low-frequency ionic current noise in solid-state nanopores imposes a limitation on the time resolution achieved in translocation experiments. Recently, this 1/f noise was described as obeying Hooge's phenomenological relation, where the noise scales inversely with the number of charge carriers present. Here, we consider an alternative model in which the low-frequency noise originates from surfa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2011
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2010.12.1137